The effect of neutral-surface iron oxide nanoparticles on cellular uptake and signaling pathways
نویسندگان
چکیده
In recent years, iron oxide nanoparticles (IONPs) have been applied widely to biomedical fields. However, the relationship between the physicochemical properties of IONPs and their biological behavior is not fully understood yet. We prepared 3-methacryloxypropyltrimethoxysilane (MPS)-coated IONPs, which have a neutral hydrophobic surface, and compared their biological behavior to that of Resovist (ferucarbotran), a commercialized IONP formulation modified with carboxymethyl dextran. The rate of MPS-IONP uptake by human aortic endothelial cells (HAoECs) was higher than ferucarbotran uptake, indicating that the neutral hydrophobic nature of MPS-IONPs allowed them to be absorbed more readily through the plasma membrane. However, the signaling pathways activated by MPS-IONPs and ferucarbotran were comparable, suggesting that surface charge is not a key factor for inducing changes in HAoECs. In vivo fate analysis showed that MPS-IONPs accumulated for longer periods in tissues than hydrophilic ferucarbotran. These findings could enlarge our understanding of NP behavior for advanced applications in the biomedical field.
منابع مشابه
Evaluation Uptake and Translocation of Iron Oxide Nanoparticles and Its Effect on Photosynthetic Pigmentation of Chrysanthemum (Chrysanthemum morifolium) ‘Salvador’
Recently, the use of superparamagnetic iron oxide nanoparticles (SPIONS) as a new and promising source of iron in agriculture has been suggested that further investigation is needed before extensive field use. In a greenhouse experiment, the effect of coated magnetite nanoparticles with humic acid (Fe3O4/HA NPs) was investigated on iron deficiency chlorosis and photosynthesis efficiency compare...
متن کاملThe effect of different concentrations of iron oxide nanoparticles on the expression of p53 gene in human amniotic membrane-derived mesenchymal stem cells
Superparamagnetic iron oxide nanoparticles (SPIONs) have made extensive advances in nanotechnology. The unique properties of these particles have expanded their application in various fields, including medicine. One of these applications is non-invasive analysis for cell tracking. However, the possibility of toxicity in cells is reported by these nanoparticles. Due to the fact that cellular dam...
متن کاملInvestigation of the Effect of Folic Acid Based Iron Oxide Nanoparticles on Human Leukemic CCRF-CEM Cell Line
Abstract Background Nanoparticulate drug delivery systems have attracted significant attention in the field of cancer nanotechnology. This study determines the effect of folate-based Fe2O3 nanoparticles. This study aimed to decorate nanoparticles with folate (FA), a molecular ligand for ‘active’ targeting of cancerous cells and the application of modified-nanoparticles in cancer treatment. ...
متن کاملInvestigation of Combination Effect Between 6 MV X-Ray Radiation and Polyglycerol Coated Superparamagnetic Iron Oxide Nanoparticles on U87-MG Cancer Cells
Background: Radiosensitization using nanoparticles is proposed as a novel strategy for treatment of different cancers. Superparamagnetic iron oxide nanoparticles (SPIONs) have been reported to enhance effects of radiotherapy in several researches. Objective: The objective of this research is to investigate the radiosensitization properties of polyglycerol coated SPIONs (PG-SPIONs) on U87-...
متن کاملEffect of coating thickness of iron oxide nanoparticles on their relaxivity in the MRI
Objective(s):Iron oxide nanoparticles have found prevalent applications in various fields including drug delivery, cell separation and as contrast agents. Super paramagnetic iron oxide (SPIO) nanoparticles allow researchers and clinicians to enhance the tissue contrast of an area of interest by increasing the relaxation rate of water. In this study, we evaluate the dependency of hydrodynamic si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016